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The effect of overtaking disturbances on the motion 
of converging shock waves 
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In this paper an exact formulation of the strength of the disturbance overtaking 
a shock is presented. The similarity solution is used to find the five interaction 
terms at all points of the flow. This work confirms that when the strength of the 
overtaking disturbance is known the CCW approximation may be modified to 
become an exact theory. 

1. Introduction 
The motion of a shock wave down a channel has been studied by Chester (1954, 

1960), Chisnell(l957) and Whitham (1957, 1958). Chester considered the motion 
of a shock through a channel consisting of a section of slowly varying area 
separating two sections of uniform area. By linearizing the problem with respect 
to the area difference between the uniform sections, he obtained a complete 
description of the flow. In  particular, he showed that when the shock was well 
past the area change it became a uniform shock whose Mach number differed 
from the incident shock Mach number M by an amount SM given by 

SA 2 M  SM 
A ( M 2 -  l ) K ( M ) ’  
- = - .  

in terms of the area change of the channel, where K ( M )  is a monotonic function 
of M varying from 0-5 for weak shocks to K, = 0.394.. . for strong shocks. 

Chisnell integrated Chester’s result and obtained a closed-form expression for 
A ( M ) .  He suggested that this expression be used to give an approximate descrip- 
tion of the motion of a shock down a channel containing continuous finite area 
changes. In  Chester’s problem no disturbances exist in the flow behind the inci- 
dent shock; hence Chisnell’s description is that of a freely propagating shock, i.e. 
a shock not affected by disturbances in the flow behind the shock. Whitham 
obtained the same A ( M )  expression by the application of a characteristic rule. 
He applied the differential relation valid along the characteristics which overtake 
the shock to the flow variables immediately behind the shock, which are given 
by the Rankine-Hugoniot relations. In  this paper the overtaking characteristics 
are the C- ones and the differential relation valid along C- is 
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Following Hayes (1968), a shock motion given by this A(M) expression will be 
referred to as a CCW description in this paper. 

Rohiszewski (1960) and Oshima et al. (1965) have formulated the error in- 
volved in using the CCW description. They achieved this by integrating (1.2) 
along two neighbouring overtaking characteristics and forming the difference of 
the two integrals. 

In  this paper an exact formulation of the strength of the disturbance over- 
taking the shock is presented. This is obtained by applying the differential 
relations valid along characteristics to an elementary quadrilateral composed 
of C+ and C- characteristics. Changes in flow quantities along an edge of the quad- 
rilateral are decomposed into contributions arising from crossing C+ and C- 
disturbances, elementary contact discontinuities, and area changes. An exact 
equation is derived from the characteristic equation which describes the varia- 
tion in the velocity jump across the elementary overtaking C- disturbance 
during its passage through the elementary quadrilateral. The variation in 
the change in velocity across the overtaking disturbance is found to consist 
of five terms. These are interpreted as due to interactions between any two 
of the C+ and C- disturbances, contact discontinuities and area changes, with 
the exception that there is no contribution from the C+, C- interaction. Follow- 
ing the idea of Ro6ciszewski and Oshima, this result is integrated along an 
Overtaking characteristic and gives the strength of the disturbance that over- 
takes the shock during its passage between the two neighbouring overtaking 
C- characteristics. An analysis of an elementary triangle composed of the 
shock path and a C+ and a C- characteristic shows the effect of the overtaking 
disturbance on the path of the shock. This analysis, incidentally, demonstrates 
the equivalence of Whitham’s derivation of A ( M )  by applying (1.2) along the 
shock path and Chisnell’s approach of neglecting overtaking disturbances. The 
exact description of the shock motion is then expressed in the form 

where h is an integral containing in its integrand the five interaction terms. This 
formula shows how the CCW description of ( I .  1)  may be corrected by taking into 
account the overtaking disturbance. 

The first application of the CCW approximation was to converging cylindrical 
and spherical shocks near the axis or centre of collapse. As a shock approaches 
the axis or centre of collapse, the strong shock equations are valid and the simi- 
larity solution of Guderley (1942), Butler (1954) and Stanyukovich (1960, p. 521) 
is available for comparison. The dependence of the shock Mach number M on the 
area A of the front is given by the CCW method from (1.1) as 

M K  A -4ICm. (1.4) 

Chisnell gave the following table comparing the values of K ,  from Butler’s 
similarity results with his own work. 

The surprisingly good agreement between the two theories has been discussed 
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K ,  for cylindrical shock 
I > r 

Y Chisnell Butler Chisnell Butler 

1.4 0.197070 0.197294 0.394141 0.394364 
1.2 0.1 6 3 1 12 0.161220 0-326223 0.320752 
5/3 0.225425 0.226054 0.452108 0.452692 

TABLE 1 

K ,  for spherical shock 
A 

by Chisnell and Whitham. Chisnell made an attempt to estimate directly the 
strength of the overtaking wave by considering only three of the five interactions 
occurring in the flow behind the shock. He found that the interaction of a C+ 
with an area change produced only a small effect in comparison with the inter- 
action of a C- with an area change and with the interaction of a C- with a 
contact discontinuity. Further, the two large interaction terms together had 
only a small effect. This fortuitous cancellation explained the remarkable 
agreement of the CCW approximation with the similarity solution. 

In this paper the exact formulation containing five interaction terms is applied 
to this problem. The similarity solution is used to find the five interaction terms 
at all points of the flow. This work supplements Chisnell’s work and confirms 
that there are two large, nearly equal and opposite interactions. In  all cases that 
have been computed it is found that the three small interaction terms remain 
less than + of each of the two large terms. 

Table 1 shows that the agreement between the CCW and similarity solution is 
closest when y = 1.4. The numerical solutions of this paper explain this point. 
For y = 1.2 the sum of the two large interaction terms is positive and for y = 3 
it is negative at  all points of the flow. For y = 1.4 this sum is found to be positive 
near the shock and negative far from the shock. Hence interactions produced 
far from the shock tend to cancel those produced near the shock in the integral 
denoted by h in (1.3). 

The similarity solution has been computed again to obtain values of K correct 
to 13 figures and the effect of the overtaking wave has been computed. Sub- 
stitution of the value of h in (1.3) gives a revised exponent in (1.4), which in all 
cases agrees to 13 figures with the similarity solution. This work confirms that 
when the strength of the overtaking wave is known the CCW approximation may 
be modified to give an exact theory. Of course, the difficulty of estimating the 
strength of the overtaking wave in other problems remains. 

2. Theory 
In this section the disturbances which overtake a shock in unsteady one- 

dimensional flow in a channel are examined. The exact equations are used to show 
that changes in the jump in fluid velocity u across a C- characteristic are pro- 
duced by five different mechanisms. This is achieved by considering an ele- 
mentary quadrilateral of C, and C- characteristics. Each of the five mechanisms 

37-2 



580 M .  Yousaf  

is identified as an interaction between two particular types of disturbance. The 
system of equations is 

where 

(2.1) 
ap au pa2u a(1ogA) 
a7 a7 u+a a7 
- +pa - + - - = 0 along C, characteristics, 

(2.2) 
ap au pa2u a(l0gA) 
as as u-a  as 
-- p a  - + - - = 0 along C- characteristics, 

a a  a a a  a 
--+(u+u)- - -  - - + ( ~ - a ) -  Zj - at ax' as at ax' 

a denotes the velocity of sound, p the pressure, p the density, u the flow velocity 
and A the cross-sectional area of the tube 

To obtain an equation for u, use is made of the commutative relation 

a a  = F---F- a a  a a  
asa7 a7as a7 as' 
----_ 

where F =  - 

which follows directly from (2.3).  By operating on (2.1) with &(a/as-F)Sy and 
on (2.2) with 67(a/aq - F) 6s and subtracting, the pressure p is eliminated to get 
the following equation for an elementary C,, C- quadrilateral: 

au 

a7 
+ 2pa- F 

(2.4) 
2pa3u' ayiog A )  2pa3u a(1og A )  

F- = 0. +- u2-a2 asa7 $-a2 a7 
-- 

The exact characteristic equations (2.1) and (2.2) describe changes in flow quanti- 
ties along edges of this elementary quadrilateral composed of C, and C- charac- 
teristics. Changes in flow quantities along an edge of the quadrilateral are now 
decomposed into contributions arising from crossing C, and C- disturbances, 
elementary contact discontinuities and area changes. The jumps in flow quanti- - 

ties across a C, characteristic are related by 

d p ,  = padu,, dp,  = ( p / a )  du+, da,  = +(y - I 

and those across a C- disturbance by 

dp- = -padup, dp- = - (p /a)  du-, da- = -I( 2 Y  

The changes in flow quantities through an area change are g 
channel flow equations 

a2u dA ypu2 d A  
a2-u2 A ' 

pu2  dA ( y -  1) a u 2 d A  

dUA = -7- dpA = -- 
a -u2 A '  

' P A = m X ,  daA= 2(u2-u2) A' 

du,, (2.5) 

- I )  du-. (2.6) 

ven by the steady 

( 2 . 7 ~ )  

(2.76) 
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Along a C+-characteristic side of the quadrilateral changes in u can arise from 
crossing C- disturbances and area changes, hence 

Contact discontinuities crossing this C, side produce changes in p and a, but not 

Similarly for a C- side, we have 

aa aa, aa+ aa, 
- = -+-+-. 
as as as as J 

(2.10a, b, c )  

At a point in the flow where u, p ,  a and their derivatives with respect to 7 and s 
are assumed known, the decomposition into the various disturbances is achieved 
as follows. As A is a known function of x, au,/aq and &,/as are given by (2.7),  
hence auJa7 and au,/as follow from (2 .8)  and (2 .10a) ,  and then ap-/@, aaJa7, 
ap+/as and aa+/as are given by (2.5) and (2 .6 ) .  Finally ap,/a7, aa,/@, ap,/as and 
aa,/as are given by (2.9) and (2.10).  

By considering the t co-ordinates of the vertices of the elementary quadrilateral 
PQRS in figure 1 consisting of C, and C- characteristics the following first-order 

relation is obtained: 8s a(sY)/as = a7 a(ss)/aT. (2.11) 

Consideration of the x co-ordinates of the vertices of the quadrilateral gives the 
following relation: 87 a{(u - a)  ssya7 = 8s a{(u +a) sT)/as. (2.12) 

Combining (2.11) and (2.12), one obtains 

a a 
as a7 

6s- (87) = 87 -(&) = 878s = -3'878s. (2.13) 

An equation for a[(au-/a7)8y]/as can now be obtained. Equation (2.13) shows 
that 

and a2u/as67 is given by (2.4). Introducing the decomposition formulae (2.8)- 
(2.10) it follows after some simplification that 

(2.14) 

This equation describes the variation of the change in velocity across a C- 
characteristic during its passage through the elementary quadrilateral com- 
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FIGURE 1. x, t diagram for the implosion of a shock wave. E = 1 is the shock-front line, 
6 = &, is the &, line. Several characteristics of the C, and C- families are also indicated. 

posed of C+ and C- characteristics. The variation in the change of velocity across a 
C- characteristic is due to the following five interaction terms. 

(i) A change in velocity across a C+ characteristic interacting with a contact 
discontinuity . 

(ii) A change in velocity across a C- characteristic interacting with a contact 
discontinuity. 

(iii) A change in velocity across a C- characteristic interacting with an area 
change. 

(iv) A change in velocity across a C+ characteristic interacting with an area 
change. 

(v) A contact discontinuity interacting with an area change. 
Integration of (2.14) with respect to s from t = - co gives the strength of the 

overtaking disturbance at  the last C+, L M  in figure 1, behind the shock as 

(2.15) 

where v* and s* are the values of 7 and s at the shock. The effect of the overtaking 
disturbance on the shock is now obtained by considering the elementary tri- 
angle LMN of figure 1.  The C- characteristic equation 

dP au d A  
--du+-- = 0 
Pa U - u  A 

(2.16) 
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is valid along M N .  The increments dp, d u  and dA may be expressed in terms of 
the increments from M to L and L to N .  As Whitham applied (2.16) to the shock 
front, we write 

B - d u  + - - 

to describe the increment from L to N .  The pressure increment from L to M is 
given by the characteristic equation 

dP au dA 
-+du+-- = 0, 
Pa u+a A 

(2.17) 

valid along C+ lines, and the increment in u from L to M is (au/@) Sq", given by 
(2.15). Hence 

2ua2 dA 
= 0. 

Use of (2.8) gives 

(2.18) 

This equation shows that the application of Whitham's characteristic rule and 
the neglect of overtaking C- disturbances are equivalent. The 67 occurring in 
(2.15) may be related to ST", its value a t  the shock, by integrating (2.13) to give 

(2.19) 

As the slopes of LN and L M  are U and u + a, 67" may be expressed in terms of 
8% b s  

U - u + a  s p  = ( 2aU )sx. (2.20) 

Combining (2.15), (2.18), (2.19) and (2.20), we get 

- d u  + - dA] - + 2 ( U - u + a ) a x S S *  2a u - w  [,,p{/ss*Fd.)H]ds = 0. (2.21) 
u - a A  ccw 

Combining the area terms, we have 

U - u  dA 
+ - ( l + A )  = 0, 

uu A 
(2.22) 

Thus we have derived an exact expression for A ,  the correction to be applied to 
the CCW approximation for any channel flow. I n  the next section this correction 
to the CCW approximation will be evaluated for a particular problem. 
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3. Similarity solution 
The exact similarly solution for converging cylindrical and spherical shocks 

near the point of collapse due to Guderley, Butler and Stanyukovich is now 
briefly described. Following Zel'dovich & Raizer (1967, p. 785), the system of 
equations for one-dimensional adiabatic flow of a perfect gas with constant 
specific heats with either cylindrical or spherical symmetry is written as 

J a a 
- (logpp-7) +u- (logpp-7) = 0, at ar 

where j = i for the cylindrical case and j = 2 for the spherical case. In  terms of 
the similarity variable 6 = r / R ,  where R ( t )  = A (  -t)" is the shock path, we 
write 

Substitution in (3.1) gives 
dV Al(Z, V )  

d(log5)=a(z,, 

(3 .2a,  b )  
d(1ogG) A2(Z ,  V )  d 2  A3(2, V )  - -- 

- A(Z, V )  ' d(1ogt) - a(e,) ' 

and the Ai (i = 1, 2, 3) are obtained by replacing the ith column of A by the 
column 

Dividing ( 3 . 2 ~ )  by (3.2a),  we obtain the first-order ordinary differential equation 

dZ/dV = A@, v)/Al(z, V ) ,  (3 .3)  

with boundary conditions 

arising from the shock equations. In  the next section the numerical procedure 
used to obtain the value of a to give a regular solution of (3.3) for the last over- 
taking C- disturbances is described. 
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The five interaction terms given in (2.14) can be written in similarity form by 
using (2.5)-(2.10) and (3 . la )  as 

jCR ( y -  I )  V 2 + 2 2  
t3 [ 4(V+Z*) 

(logA) = - 
4(u-a)2 I-- a7 as 

( V -  a - 24) tV’+ V (  V -  I - 24) - - V+Zk jvz 1 ’ 
4(u-u)2 I-- as a7 

x ( V - a + z a ) t V f + V ( V - 1 + 2 + ) - ~ *  , [ j V Z  1 
aP a j tR  V22 

(logA)---“- (logA) = - 
as a7 ] t3 G(V-Z*)(V+Z8)2 

+ ( j + 1) G V 2 4 1  . G( V 2  - aV - 2) GV2( V -  1) 
Z t  t V f -  2 4  x [ - aZ4tG’ - 

The equation of a C- characteristic drldt = u - u may be written in similarity form 
as 

dtlt = d</<(V-a+Z*) by use of (3 . la ) .  

In similarity form F = v(,$)/t, where 

Hence (2.19) may be written as 

Sr = Sy*expg, (3.4) 

where (3.4a) 

The similarity form of (2.23) is 

t t 3  5 

t” tRi=1 
T = -, f(t) = - C 4 where 

and [ = go is the value of t on the limiting C- characteristic. The computation 
of this expression for h is discussed in the next section. 
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FIGURE 2 .  The integral curve starts a t  A,, the shock point, passes through the saddle 
point A,,, where A = 0, and ends at  the origin, where [ = Q). 

4. Numerical solution 
To determine the parameter a occurring in (3 .3 ) ,  direct numerical integration 

is required. In  the 8, Z plane shown in figure 2, the shock point c = 1 is denoted 
by A, and has co-ordinates V = 2 a / ( y  + l), 2 = 2 y ( y  - 1) a2/(y + 1)2, while 
6 = co is the origin. To obtain an integral curve from A ,  to the origin, it is neces- 
sary to pass through a saddle point A,. This saddle point is defined by A = 0 = A,, 
and has V = [wl + (w; - 4w2)4]/2yj, where w1 = y [ ( j  + 1) a - I] + 2( 1 -a)  and 
w 2  = 2ya( 1 - a ) j .  Zel'dovich has shown that A2 = 0 = A3 a t  A,  also. A unique 
value of a ensures that the integral curve starting a t  A,  will arrive at  A,. Butler 
published the value of a correct to six figures and Welsh (1967) corrected the 
last decimal places in some cases. 

In  analysing the effect of the five different interaction terms in (2 .14 ) ,  greater 
accuracy is needed. The values of a have been found to 12 significant figures and 
the results are given in table 2.  These were obtained by varying a and testing the 
value of 2 at the end of the range of integration. In  integrations from A,  to A ,  
and from A ,  to A, variations in the 13 significant figures of a were found to give 
values of Z a t  the end point correct to 13 figures. The integral 

The path of integration, a C- characteristic, is defined by dt/t = dg/c( V - 01 + 2*) 
.and may be written as 

T A  dT 
dV - V-a+ZSA,  

- by use of ( 3 . 2 a ) .  _ -  
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j = 1  j = 2  
Y -7 & 

3 0-688 376 822 923 

1.4 0.835 323 192 953 0.717 174 501 489 
1.2 0.861 116 302 391 0.757 141 814 781 
- 0-815 624 901 431 6 

TABLE 2. Calculation of the similarity exponent a 

20 

16 

12 

1 

4 
N 

d 
0 

X 
- (  3 * 

- I  

- 

- 1 :  

- 11 

- 21 

I I I I 
.OO 1.04 1.08 1.12 1.16 

5 

FIGURE 3. The two large interaction terms I, and I,. 

Equations ( 3 . 4 ~ )  and ( 3 . 2 b )  may be written as 

by use of ( 3 . 2 a ) .  
Because of the singular behaviour of Ta-2, a variable W = log (Ta--2 + 9)  is 

used in place of g ,  giving 
A _ -  dU f(') exp(w)[%. G?v - V - a + Z &  (4.4) 
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60 c\ \ 

X I \ 
\ I  4 4  I .08 1.12 1.16 E 

-60 L 
FIUURE 4. Sum of the two large interaction terms I, + I,, the three small interaction 

I,, I3 and I4 and the sum of all the five interaction terms. 
terms 
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FIGURE 5 .  The integral U for the casej  = 2 with (a) y = 1.4, 

(6) = 1.2 &ad (c) y = f .  
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j = 1  j = 2  
Y - -7 

1.2 
1.4 

-0.011 595 591 367 297 
0.000 359 237 974 498 
0.002 789 970 211 271 

-0.016 758 003 684 793 
0.000 556 946 366 733 
0.004 087 841 751 605 6 

3 
- 

TABLE 3. Calculation of A, the strength of the overtaking disturbances 

Using (4.1) and (4.2), it follows that 

Equations (4.1), (4.3), (4.4) and (4.5) togetherwith ( 3 . 2 ~ )  and (3.3) areintegrated 
from ( = 1 to near A ,  using the correct value of a. The value of the integral from 
a point near A ,  to A ,  is evaluated using linear analysis. The values of h are ob- 
tained for the six cases. This takes the CCW value of K from that in (1.1) to the 
exact value in (1.3), which agrees with Butler's K in all decimal places available. 

The results for the case j = 2, y = 1.4 will now be discussed in detail. The 
cancellation of the five interaction terms is illustrated for this case in figures 3 
and 4. In  figure 3, the two big terms Il and I5 are plotted against t, the similarity 
variable, and it is noted that I, is nearly the image of I, in the < axis. In figure 4, 
I, + I,, the sum of the two large interaction terms, I,, I3 and Id, the three small 
interaction terms, and the sum of all the interaction terms are plotted. It has been 
noted that the sum of the five interaction terms changes sign when ( is between 
1.03 and 1.04. It has also been noted that the sum I, + I, of the two large terms 
also changes sign near the shock. The further cancelling occurring in the case 
y = 1-4 is illustrated by the strength of the overtaking disturbance 

occurring in (3.5), which changes sign for y = 1.4 andj  = 2 as shown in figure 5 (a). 
This further cancellation give rise to close agreement between the CCW approxi- 
mation and the similarity solution in the case y = 1.4. The above integral does not 
change signin the other cases y = 1.2 and y = $ as is shown in figures 5 ( b )  and (c). 
Numerical solutions were also obtained for five other cases. In  the case y = 1.4, 
j = 1, the sum of the two large interaction terms I, and I5 again changes sign 
near the shock. The sum of the five interaction terms changes sign when ( is 
between 1-05 and 1.06 and the integral occurring in (3.5) changes sign in this 
case. In  the cases y = 1.2,j  = 1 and 2,  the sum of the two large interaction terms 
I, and I5 remains positive and so do the sums of all five interaction terms and the 
integral in (3.5). In  the cases y = Q, j = 1 and 2, the sum of two large interaction 
terms I, and 15, the sum of all five interaction terms and the integral in (3.5) all 
remain negative. Thevaluesof h occurring in (2.2), the strengthsof the overtaking 
disturbances, were also calculated for the six cases and are given in table 3. 
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The author is very much indebted to Dr R. F. Chisnell for valuable advice 
and criticism received during the preparation of this paper. This work was 
carried out while the author 'was on leave of absence at  Manchester University. 
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